养生健康

葡萄糖的分解途径

葡萄糖的分解途径

天然的葡萄糖,无论是游离的或是结合的,均属D构型,在水溶液中主要以吡喃式构形含氧环存在,为α和β两种构型的衡态混合物。

在常温条件下,可以α-D-葡萄糖的水合物(含1个水分子)形式从过饱和的水溶液中析出晶体,熔点为80℃;而在50~115℃之间析出的晶体则为无水α-D-葡萄糖,熔点146℃

。115℃以上析出的稳定形式则为β-D-葡萄糖,熔点为148~150℃。呋喃环形式的葡萄糖仅以结合状态存在于少数天然化合物中。

D-葡萄糖具有一般醛糖的化学性质:在氧化剂作用下,生成葡萄糖酸,葡萄糖二酸或葡萄糖醛酸;在还原剂作用下,生成山梨醇;在弱碱作用下,葡萄糖可与另两种结构相近的六碳糖──果糖和甘露糖──三者之间通过烯醇式相互转化。葡萄糖还可与苯肼结合,生成葡萄糖脎,后者在结晶形状和熔点方面都与其他糖脎不同,可作为鉴定葡萄糖的手段。

大多数生物具有酶系统可分解D-葡萄糖以取得能量的能力。在活细胞中,例如哺乳动物的肌肉细胞或单细胞的酵母细胞中,葡萄糖先后经过不需氧的糖酵解途径、需氧的三羧酸循环以及生物氧化过程生成二氧化碳和水,释放出较

多的能量,以ATP(三磷酸腺苷)形式贮存起来,供生长、运动等生命活动之需。在无氧的情况下,葡萄糖仅仅被分解生成乳酸或乙醇,释放出的能量少得多,酿酒是无氧分解的过程。工业上,用酸或酶水解淀粉制得的葡萄糖可用做食品、制酒、制药等工业生产的原料。

糖代谢紊乱是怎么回事

糖是一类化学本质为多羟醛或多羟酮及其衍生物的有机化合物。在人体内糖的主要形式是葡萄糖(glucose,Glc)及糖原(glycogen,Gn)。葡萄糖是糖在血液中的运输形式,在机体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。葡萄糖与糖原都能在体内氧化提供能量。

食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他己糖代谢等。

各种代谢状态紊乱各不相同。糖代谢紊乱引起糖尿病,脂代谢紊乱引起高脂血症,尿酸代谢紊乱引起痛风等等。电解质也会出现代谢紊乱,引起相应的紊乱状态,如高钾、低钾血症等。

恶性疟原虫的营养代谢

疟原虫可通过表膜的渗透或经胞口以吞饮方式摄取营养。在肝细胞内寄生的红细胞外期疟原虫,以肝细胞的胞质为营养。

1.葡萄糖代谢:红细胞内期疟原虫的糖原储存很少,葡萄糖是疟原虫红细胞内期主要的能量来源。疟原虫的寄生使红细胞膜发生变化,增强了葡萄糖通过膜的主动转运,或者除去某些抑制转运的因子,从而使疟原虫可源源不断地从宿主的血浆获得葡萄糖以供代谢之用。6-磷酸葡萄糖脱氢酶(G6PD)是戊糖磷酸途径所需要的酶,受染疟原虫的红细胞内G6PD缺乏时,影响疟原虫分解葡萄糖,导致虫体发育障碍。缺乏G6PD的病人对恶性疟原虫有选择抗性是否与此有关尚待进一步研究。

2.蛋白质代谢:疟原虫获得的游离氨基酸主要是来自红细胞内的血红蛋白的水解产物,还来自宿主的血浆和红细胞内的氨基酸库及有机物碳。血红蛋白从疟原虫胞口被吞入,由胞口基部长出食物泡,胞口孔被膜封闭。血红蛋白被食物泡内的酸性肽链内切酶和氨基肽酶的协同作用消化分解为珠蛋白和血红素。珠蛋白在酶的作用下再分解为几种氨基酸以供合成虫体本身的蛋白质。血红素最后形成一种复合物即疟色素。疟色素不被溶解和吸收而留在食物泡的壁上。在红细胞内裂体增殖过程中,疟色素逐渐融合成团,随着裂体增殖完成后被排入血流。

3.核酸代谢:疟原虫没有从头合成嘌呤的途径,仅依靠一个补救途径利用现成的嘌呤碱基和核苷。参与嘌呤补救途径的酶有腺苷酸脱氢酶、嘌呤—核苷磷酸化酶等。在疟原虫的多种生物合成途径中,对氨基苯甲酸、四氢叶酸(THF)等都是很重要的辅助因子。如果宿主的食物中缺乏PABA,则影响THF的生成,其体内寄生的疟原虫的生长繁殖发生障碍,感染因而被抑制。

4.脂类代谢:疟原虫无脂类储存,也不能合成脂肪酸与胆固醇,完全依赖于宿主提供,如从宿主血浆中获得游离脂肪酸和胆固醇,胆固醇对维持疟原虫及受染细胞的膜的完整性都具有重要作用。红细胞内疟原虫所需的脂类可由摄入的葡萄糖代谢的产物组成,其中主要为磷脂,磷脂增多与疟原虫膜的合成有关。

血糖的来龙去脉

正常人血糖的来源主要有3条途径。正常人血糖的去路主要有5条。

血液中所含的葡萄糖,称为血糖。它是糖在体内的运输形式。血糖可用葡萄糖氧化酶法、邻甲苯胺法、福林吴法测定,目前国内医院多采用前两种方法。福林-吴法已趋淘汰。正常人空腹血浆血糖为3.9~6.1mmol/L(葡萄糖氧化酶法测定)。饭后血糖可以暂时升高,但不超过180mg/dl,空腹血糖浓度比较恒定,正常为70-110mg/dl(3.9-6.1mmol/L),两种单位的换算方法为:1mg/dL=0.0655mmol/L。

正常人血糖的来源主要有3条途径。

①饭后食物中的糖消化成葡萄糖,吸收入血循环,为血糖的主要来源。

②空腹时血糖来自肝脏,肝脏储有肝糖元,空腹时肝糖元分解成葡萄糖进入血液。

③非糖物质即饮食中蛋白质、脂肪及从肌肉生成的乳酸可通过糖异生过程变成葡萄糖。

正常人血糖的去路主要有5条。

糖异生

①血糖的主要去路是在全身各组织细胞中氧化分解成二氧化碳和水,同时释放出大量能量,供人体利用消耗。

②进入肝脏变成肝糖元储存起来。

③进入肌肉细胞变成肌糖元贮存起来。

④转变为脂肪储存起来。

⑤转化为细胞的组成部分。

溶血性贫血是什么原因造成的呢

1.红细胞膜异常

(1)遗传性红细胞膜缺陷,如遗传性球形细胞增多症、遗传性椭圆形细胞增多症、遗传性棘形细胞增多症、遗传性口形细胞增多症等。

(2)获得性血细胞膜糖化肌醇磷脂(GPI)锚连膜蛋白异常,如阵发性睡眠性血红蛋白尿(PNH)。

2.遗传性红细胞酶缺乏

(1)戊糖磷酸途径酶缺陷,如葡萄糖-6-磷酸脱氢酶(G6PD)缺乏症等。

(2)无氧糖酵解途径酶缺陷,如丙酮酸激酶缺乏症等。

此外,核苷代谢酶系、氧化还原酶系等缺陷也可导致溶血性贫血。

3.遗传性珠蛋白生成障碍

(1)珠蛋白肽链结构异常不稳定血红蛋白病,血红蛋白病S、D、E等。

(2)珠蛋白肽链数量异常地中海贫血。

葡萄糖的用途

葡萄糖是己醛糖,化学式C6H12O6,白色晶体,易溶于水,熔点146℃

它是自然界分布最广泛的单糖。其主要化学性质是:

(1)分子中有醛基,有还原性,能与银氨溶液反应,被氧化成葡萄糖酸

(2)醛基还能被还原为已六醇

(3)分子中有多个羟基,能与酸发生酯化反应

(4)葡萄糖在生物体内发生氧化反应,放出热量。

葡萄糖是生物体内新陈代谢不可缺少的营养物质。它的氧化反应放出的热量是人类生命活动所需能量的重要来源。在食品、医药工业上可直接使用,在印染制革工业中作还原剂,在制镜工业和热水瓶胆镀银工艺中常用葡萄糖作还原剂。工业上还大量用葡萄糖为原料合成维生素C(抗坏血酸)。

葡萄糖的分解途径是怎样的

天然的葡萄糖,无论是游离的或是结合的,均属D构型,在水溶液中主要以吡喃式构形含氧环存在,为α和β两种构型的衡态混合物。

在常温条件下,可以α-D-葡萄糖的水合物(含1个水分子)形式从过饱和的水溶液中析出晶体,熔点为80℃;而在50~115℃之间析出的晶体则为无水α-D-葡萄糖,熔点146℃。115℃以上析出的稳定形式则为β-D-葡萄糖,熔点为148~150℃。呋喃环形式的葡萄糖仅以结合状态存在于少数天然化合物中。

D- 葡萄糖具有一般醛糖的化学性质:在氧化剂作用下,生成葡萄糖酸,葡萄糖二酸或葡萄糖醛酸;在还原剂作用下,生成山梨醇;在弱碱作用下,葡萄糖可与另两种结构相近的六碳糖──果糖和甘露糖──三者之间通过烯醇式相互转化。葡萄糖还可与苯肼结合,生成葡萄糖脎,后者在结晶形状和熔点方面都与其他糖脎不同,可作为鉴定葡萄糖的手段。

大多数生物具有酶系统可分解D-葡萄糖以取得能量的能力。在活细胞中,例如哺乳动物的肌肉细胞或单细胞的酵母细胞中,葡萄糖先后经过不需氧的糖酵解途径、需氧的三羧酸循环以及生物氧化过程生成二氧化碳和水,释放出较多的能量,以ATP(三磷酸腺苷)形式贮存起来,供生长、运动等生命活动之需。在无氧的情况下,葡萄糖仅仅被分解生成乳酸或乙醇,释放出的能量少得多,酿酒是无氧分解的过程。工业上,用酸或酶水解淀粉制得的葡萄糖可用做食品、制酒、制药等工业生产的原料。

血糖的来龙去脉

血液中所含的葡萄糖,称为血糖。它是糖在体内的运输形式。血糖可用葡萄糖氧化酶法、邻甲苯胺法、福林吴法测定,目前国内医院多采用前两种方法。福林-吴法已趋淘汰。正常人空腹血浆血糖为3.9~6.1mmol/L(葡萄糖氧化酶法测定)。饭后血糖可以暂时升高,但不超过180mg/dl,空腹血糖浓度比较恒定,正常为70-110mg/dl(3.9-6.1mmol/L),两种单位的换算方法为:1mg/dL=0.0655mmol/L。

正常人血糖的来源主要有3条途径。

①饭后食物中的糖消化成葡萄糖,吸收入血循环,为血糖的主要来源。

②空腹时血糖来自肝脏,肝脏储有肝糖元,空腹时肝糖元分解成葡萄糖进入血液。

③非糖物质即饮食中蛋白质、脂肪及从肌肉生成的乳酸可通过糖异生过程变成葡萄糖。

正常人血糖的去路主要有5条。

糖异生

①血糖的主要去路是在全身各组织细胞中氧化分解成二氧化碳和水,同时释放出大量能量,供人体利用消耗。

②进入肝脏变成肝糖元储存起来。

③进入肌肉细胞变成肌糖元贮存起来。

④转变为脂肪储存起来。

⑤转化为细胞的组成部分。

糖代谢紊乱的激素的调节

调节血糖浓度的激素可分为两大类,即降低血糖浓度的激素和升高血糖浓度的激素。各类激素调节糖代谢反应从而影响血糖浓度的机制在表3-1中简要说明。

1.胰岛素胰岛素是胰岛β细胞分泌的一种蛋白类激素,由51个氨基酸组成。血中葡萄糖或氨基酸浓度高时,可促进胰岛素的分泌。

胰岛素对血糖的调节机制,首先是使肌肉和脂肪组织细胞膜对葡萄糖的通透性增加,利于血糖进入这些组织进行代谢。胰岛素还能诱导葡萄糖激酶、磷酸果糖激酶和丙酮酸激酶的合成,加速细胞内葡萄糖的分解利用。胰岛素通过使细胞内cAMP含量减少,激活糖原合成酶和丙酮酸脱氢酶系,抑制磷酸化酶和糖异生关键酶等,使糖原合成增加,糖的氧化利用、糖转变为脂肪的反应增加,血糖去路增快;使糖原分解和糖异生减少或受抑制,使血糖来源减少,最终使血糖浓度降低。

近年来从人血清中分离出的类胰岛素生长因子(insulin-likegrowthfactor,IGF,也称somatomedins)其化学结构和生物学特性类似胰岛素,但IGF的免疫学性质与胰岛素完全不同。IGF通过IGF受体和胰岛素?相当于胰岛素的一部分,例如:①促进脂肪细胞转变、摄取和氧化葡萄糖,并合成脂肪的强度仅为胰岛素的1/50或1/100;②对心肌细胞摄取葡萄糖的作用为胰岛素的1/2或1/5;对骨骼肌摄取、氧化葡萄糖及合成糖原的作用只有胰岛素的1/20。IGF的长期效应是促进生长。

2.胰高血糖素是胰岛α细胞合成和分泌的由29个氨基酸组成的肽类激素,分子量为3500。其一级结构和一些胃肠道活性肽如胰泌素、肠抑制胃肽(GIP)等类似。血糖降时胰高血糖素分泌增加,高糖饮食后其分泌则减少。

胰高血糖素主要通过提高靶细胞内cAMP含量达到调节血糖浓度的目的。细胞内的cAMP可激活依赖cAMP的蛋白激酶,后者通过酶蛋白的共价修饰改变细胞内酶的活性,即激活糖原分解和糖异生的关键酶,抑制糖原合成和糖氧化的关键酶,使血糖升高。该蛋白激酶还激活脂肪组织的激素敏感性脂肪酶,加速脂肪的动员和氧化供能,减少组织对糖的利用,从而加重血糖升高。目前认为,胰高血糖素是使血糖浓度升高的最重要的激素。

胰高血糖素的前体为无活性的胰高血糖素原。由肠道上皮细胞生成和分泌的类似胰高血糖素的物质叫肠高血糖素。所以,用一般免疫法测得的高血糖素由胰高血糖素、胰高血糖素原、肠高血糖素3种形式组成,正常血浆中的基础浓度为50-100ng/L。

在激素发挥调节血浆浓度的作用中,最重要的是胰岛素和胰高血糖素。肾上腺素在应激时发挥作用,而肾上腺皮质激素、生长激素等都可影响血糖水平,但在生理性调节中仅居次要地位。

综上所述,胰岛素和胰高血糖素是调节血糖浓度的主要激素。而血糖水平保持恒定则是糖、脂肪、氨基酸代谢协调的结果。

⒊肝在糖代谢调节中的作用肝是调节血糖浓度的主要器官,这不仅仅是因为肝内糖代谢的途径很多,而关键还在于有些代谢途径为肝所特有。

餐后食物中糖类经消化吸收,以葡萄糖形式大量进入血液,使血糖浓度暂时轻度升高。此时葡萄糖直接促进肝等组织摄取葡萄糖,使肝细胞内糖原合成明显增加,同时也抑制肝糖原的分解,减少其向血中释放葡萄糖,同时还使糖转为脂肪,结果是餐后血糖浓度仅轻度升高,并很快恢复至正常范围。饥饿时肝通过自己特有的葡萄糖-6-磷酸酶,将贮存的肝糖原分解成葡萄糖以提供血糖,而肌糖原则不能转为葡萄糖。

肝还是糖异生的主要器官(表3-2),在生理情况下,甘油、氨基酸等非糖物质主要在肝细胞骨转变成葡萄糖,以补充血糖因空腹所致血糖来源不足。这是因为糖异生途径的关键酶:丙酮酸羧化酶、磷酸烯醇式丙铜酸羧激酶的活性似肝最高。饥饿或剧烈运动时,肝脏利用非糖物质转变成糖的作用尤为显着。此外,肝所具有的果糖二磷酸酶、葡萄糖-6-磷酸酶在其他单糖转化为葡萄糖的方面也起着重要作用。

由此可见,肝在血糖的来源与去路方面所发挥的作用较其他器官全面,所以它是维持血糖恒定的关键器官。当机体需要时,通过神经-激素的作用,使肝细胞内各种糖代谢途径的酶活性改变,实现肝维持血糖浓度恒定的目的。当肝功能严重受损时,进食糖类或输注葡萄糖液都可发生一时性高血糖甚至糖尿,而饥饿时则可出现低血糖症状。

喝酒可以降血糖吗?

要想解释这个问题我们首先要说说血糖来源与去路。食物和肝脏是血糖来源的两大途径。食物如淀粉类物质产生葡萄糖相信大家很熟悉,而肝脏则是通过糖异生的途径和分解肝糖原来产生葡萄糖,简单来说就是肝脏将非糖物质或糖原转化为葡萄糖的过程,这种途径保证在我们自身饥饿的情况下维持我们的血糖稳定。

我们下面就说说酒精是怎样降低血糖的。首先酒精会影响胰脏的功能,刺激胰岛素的分泌,加快了血糖的去路。其次,酒精的代谢会影响肝脏的代谢从而抑制糖异生的过程并且阻止糖原转化为葡萄糖,降低了葡萄糖的产生速度。最后许多糖友在饮酒时会不自觉的降低了食物的摄入量尤其是淀粉类物质的摄入,也减少了血糖的来源,因此在测餐后血糖时有些糖友们会发现血糖是下降的。

相信许多糖友不禁要问:“那我们就都喝酒就好了,这样不就可以降血糖了吗?”事实上饮酒所带来的血糖降低的现象不仅不能治疗糖尿病,对我们的危害还很大,如长期或过量饮酒造成的脂肪肝、肥胖等疾病。

所以总得看来,这个说法并没有任何的科学依据,酒精对人体的伤害还是相当大的,而空腹喝酒更有可能会危机生命。喝酒能降血糖这个说法可以说纯属无稽之谈。想要降血糖还是要经过合理的饮食调理和良好的作息才会有效果,小编希望我们当中血糖高的人不要轻信谣言,善自保养才是关键。

果糖的介绍

果糖是一种最为常见的己酮糖。存在于蜂蜜[3] 、水果中,和葡萄糖结合构成日常食用的蔗糖。果糖中含6个碳原子,也是一种单糖,是葡萄糖的同分异构体,它以游离状态大量存在于水果的浆汁和蜂蜜中,果糖还能与葡萄糖结合生成蔗糖。 纯净的果糖为无色晶体,熔点为103~105℃,它不易结晶,通常为黏稠性液体,易溶于水、乙醇和乙醚。D-果糖是最甜的单糖。

一种提炼自各种水果和谷物,全天然、甜味浓郁的新糖类,因不易导致高血糖,不易产生脂肪堆积而发胖,更不会产生龋齿,而被更多的人们所认识。果糖主要产自天然的水果和谷物之中,具有口感好、甜度高、升糖指数低以及不易导致龋齿等优点。果糖的甜度是蔗糖的1.8倍,是所有天然糖中甜度最高的糖,所以在同样的甜味标准下,果糖的摄入量仅为蔗糖的一半。

过去认为使用果糖代替砂糖,在相同甜度下可以减少热量摄取,其升糖指数也很低,果糖在预防及控制糖尿病上较佳。但此观点已经遭到反驳。

虽然有一少部分组织(例如精细胞[4] 和一些肠细胞)会直接利用果糖,但果糖的最主要代谢是在肝脏[5] 。

相比食用高葡萄糖饮料而言,在用餐时食用高果糖饮料会导致胰岛素和瘦素(leptin)的水平降低,饥饿激素(Ghrelin)水平升高[6] 。研究者发现,由于胰岛素和瘦素水平降低和饥饿激素水平升高,大量食用果糖会导致体重增加[7] 。

大量摄入果糖会导致非酒精性脂肪肝[8-9] 。

果糖晶体 实际上,对于果糖我们并不陌生,大多数水果中均含有果糖。而人类食用果糖的历史,也是源远流长。自原始时代起,就有人类食用蜂蜜的记录,而蜂蜜就是典型的果糖与葡萄糖各占一半的混合糖浆。此后的数千年里,果糖一直没有远离人类的饮食,但由于加工工艺和技术能力的限制,果糖一直没有大规模的占领人们的餐桌。直到上世纪七十年代,美国一举突破了生产果糖的技术瓶颈,开始了大规模工业化的生产果糖。此后,果糖的产量以每年递增百分之三十的速度迅猛发展。在果糖产量越来越大的同时,其独特的优点也逐渐显现。果糖,与传统的天然糖之间最大的区别就是升糖指数低,即GI值低,GI(Glycemic Index)是反映食物引起人体血糖升高程度的指标。实验证明,在同等条件下,如果将食用葡萄糖后所产生的血糖升高指数当作100的话,那么食用果糖后,人体的血糖升高指数仅为23,甚至有的能低至19,而蔗糖则高达65。也就是说,食用果糖后人体血糖的升高程度要远远低于其他传统的天然糖品,也因此,果糖以及相关制品被广泛应用于糖尿病患者与肝功能不全者的饮食结构中。

其实,果糖之所以升糖指数低,主要是由于果糖在人体内的代谢速度要比葡萄糖和蔗糖等传统糖都要慢,并且果糖的代谢并不依赖胰岛素,而是直接进入人体肠道内被人体所消化利用。所以,果糖的升糖指数才远远低于传统糖,被称之为“健康糖”。

此外,果糖的口味和甜度也优于传统糖,不仅自身具有水果香味,并且甜度高,其甜度达到了蔗糖的1.8倍,为天然糖中最甜的糖类。因此,只需要较少的用量,就可以拥有与其他糖类相同的甜度,进而满足味觉享受。至于果糖不易导致龋齿的原因,实际上是因为果糖比较不容易被口腔内的微生物分解和聚合,所以,食用后产生蛀牙的几率就比葡萄糖或蔗糖等天然糖要小的多。

1.1果糖的来源与结构 近 年来,随着层析技术的不断提高和新型仪器的问世,对糖类生物化学的研究获得了长足的发展。迄今为止,已证实自然界有200多种单糖。大量事实说明,在分子的语言中,单糖如同氨基酸及核酸,可以作为密码字母,借以拼写许多天然物质的特异性〔2〕。糖是生命和各种运动过程的重要能源。依水解状况,可将糖分为3类:(1)凡不能水解成更小分子的糖为单糖;(2)凡仅能水解成少数(2~10个)单糖分子的糖为寡糖;(3)可水解为多个单糖分子的糖为多糖。葡萄糖、果糖和半乳糖是对人体最为重要的单糖。果糖存在于水果和蜂蜜中,且几乎总是与葡萄糖同时存在于植物中,尤以菊科植物为多。从化学结构上看,糖是含有多个羟基的醛类或酮类,分别称为醛糖和酮糖。葡萄糖为己醛糖,果糖为己酮糖;相似的化学结构决定了二者有一些相似的生化特性。

1.2 果糖的代谢特点 (1)果糖主要在肝、肾和小肠中经果糖激酶催化生成1一磷酸果糖。(2)在体内,果糖可以转化为葡萄糖或合成糖元;但是葡萄糖和糖元不能逆向转化为果糖。(3)因果糖可绕过糖酵解中的限速酶(磷酸果糖激酶),遂在肝脏,果糖的分解速度快于葡萄糖。(4)果糖代谢的强度取决于果糖浓度,不受胰岛素的影响〔3〕。果糖的服用和吸收不会引起低血糖。

1.3 果糖的吸收与生化效应 (1)当果糖与肠粘膜上皮细胞载体蛋白结合后,能顺利地被吸收(尽管慢于葡萄糖的吸收),在肝(是最主要的部位)、肾和小肠内被特异性果糖激酶作用而生成1—磷酸果糖〔4〕。之后,在1—磷酸果糖醛缩酶的催化下生成磷酸二羟丙酮和甘油醛。后者通过甘油醛激酶的磷酸化而生成3—磷酸甘油醛。该产物与磷酸二羟丙酮经糖酵解途径氧化分解或经糖元异生而合成糖元。(2)血糖是机体组织器官(特别是神经组织)的主要能源,血糖的高低及恒定与否,影响着组织器官的生理活动。通常,在神经和激素的调节下,糖的分解与合成保持动态平衡,血糖浓度相对恒定。正常空腹血糖为80~120毫克%(folin—吴宪法),实指血中还原总糖,其中主要是葡萄糖,也含有果糖在内。血中果糖浓度的升高对葡萄糖浓度有一定的抑制作用。(3)果糖入肝后,在特异的1—磷酸果糖醛缩酶的作用下,可迅速转变成葡萄糖并加入“Cori循环”〔5〕:果糖在肝内被转化成葡萄糖→肝糖元→血糖→肌糖元→血乳酸→肝糖元。这一重要循环的存在,有助于机体维系血糖的正常水平;有助于运动中堆积之乳酸的消散和充分利用;有助于机体肝糖元和肌糖元的再合成。(4)Adopo(1994)证实,运动中摄入果糖是有益的〔6〕。他报告摄入果糖与摄入等量葡萄糖的氧化量相似。若摄入等量混合的果糖和葡萄糖(例如各服50克),其氧化率要比单纯摄入100克葡萄糖高21%。原因在于果糖和葡萄糖有各自不同的氧化途径,相互间竞争性较小。

糖代谢先天性异常

糖代谢先天性异常包括糖原代谢异常、糖分解代谢异常和G6PD(6-磷酸葡萄糖脱氢酶)缺陷。

一、糖原代谢异常

糖原代谢异常最常见的是糖原贮积病,这是由于糖原生成和分解的酶系统先天性缺陷所致,使糖原在细胞中过多贮积或糖原分子异常。由于缺陷的酶不同,故糖原贮积病分为许多型。

二、糖分解代谢异常

糖分解代谢途径先天代谢异常可有:

1.丙酮酸激酶(PK)缺乏病

成熟红细胞中不含线粒体,完全依赖糖酵解供能。在糖酵解过程中,丙酮酸激酶催化磷酸烯醇式丙酮酸医学.育网收集整理生成烯醇式丙酮酸,同时产生ATP,用于维持红细胞内外的离子梯度,特别是通过Na+-K+ATP酶维持细胞内外Na+-K+浓度梯度,以维持红细胞膜的完整性。PK缺乏将导致ATP生成障碍,红细胞发生肿胀,进而发生溶血。

2.丙酮酸脱氢酶复合物缺乏症

丙酮酸脱氢酶复合物由三种酶,五种辅助因子组成。

三种酶:丙酮酸脱氢酶、二氢硫辛酸转乙酰基酶、二氢硫辛酸脱氢酶;

五种辅助因子:NAD+、FAD、CoASH、焦磷酸硫胺素,硫辛酸。

该酶复合物中各种亚基都可能发生先天性缺陷,这些缺陷都可使丙酮酸不能继续氧化产生ATP,使脑组织不能有效地利用葡萄糖供能,进而影响了儿童大脑的发育和功能,严重者可导致死亡。丙酮酸不能进一步氧化,致使患儿血液中乳酸,丙酮酸和丙氨酸的浓度显著升高,出现慢性乳酸酸中毒。

3.磷酸果糖代谢异常

磷酸果糖激酶与果糖1,6-二磷酸酶是作用相反的一对酶,它们所催化的化学反应是糖代谢途径中的一处无效循环(底物循环),由于酶的遗传性缺陷,这个无效循环得不到控制,造成ATP大量分解产热。临床上可因吸入氟烷诱发恶性发热。

三、G6PD(6-磷酸葡萄糖脱氢酶)缺陷

G6PD为X伴性遗传。G6PD催化磷酸戊糖途径的关键反应:6-磷酸葡萄糖脱氢生成6-磷酸葡萄糖内脂,脱下的氢由NADP+接受,产生NADPH。

NADPH在维持红细胞的正常形态与功能方面起重要作用。

一般情况下磷酸戊糖途径提供的NADPH还能维持还原型谷胱甘肽的水平,保证红细胞的正常形态与功能,当红细胞中NADPH的需要量增加,如服奎宁类抗疟疾药时,G6PD缺乏患者红细胞中磷酸戊糖途径医学.育网收集整理的代谢速度则不能相应增加,提供的NADPH不能保证维持还原型谷胱甘肽所应有的水平,可引起严重的溶血性贫血。

NADPH还是体内许多合成代谢的供氢体并参与体内的羟化反应,与生物合成或生物转化有关。

运动时喝什么水好 运动时喝碱性饮料的好处

碱性饮料中的镁能促进糖原分解,加速能量代谢,提高运动效率,人体缺镁的时候,葡萄糖通过无氧酵解途径产生乳酸,导致肌肉酸痛和痉挛出现,补充镁有助于帮助维持细胞有氧氧化,即便在运动量比较大的时候,也可以减少乳酸产生;此外补充镁还能避免因大量出汗引起的电解质平衡失调。

相关推荐

什么原因导致新生儿肺炎

产后感染性肺炎,表现为发热或体温不升、气促、鼻翼扇动、发绀、吐沫、三凹征。肺部体征早期常不明显,病程中可出现双肺细湿罗音。呼吸道合胞病毒肺炎可表现为喘息、肺部听诊可闻哮鸣音。鼻烟部分泌物细菌培养、病毒分离和荧光抗体,血清特异性抗体检查有助于病原学诊断。金黄色葡萄球肺炎易合并脓气胸、x线检查可见肺大泡。 疾病病因 ①呼吸道途径:与呼吸道感染患者接触。 ②血行感染:常为败血症的一部分。 ③医源性途径:由于医用器械如吸痰器、雾化器、供氧面罩、气管插管等消毒不言九,或呼吸机使用时候过长,或通过义务人员手传播等引起

晚上吃冬枣会胖吗

晚上吃冬枣会发胖。 大枣含有大量的糖类物质,主要为葡萄糖,也含有果糖、蔗糖,以及由葡萄糖和果糖组成的低聚糖、阿拉伯聚糖及半乳醛聚糖等。大量的糖分特别是葡萄糖进入体内,是不容易被分解的,所以长期这样的话,就是会容易引起变胖。

低血糖的时候首选口服葡萄糖

由于现代人们的工作紧张生活饮食不规律,部分人劳累后容易出现低血糖的症状。当血糖浓度低于50~60mg/dl时,出现低血糖早期症状(心跳加快、眼冒金花、颤抖、饥饿感、无力、手足发麻、说话含糊不清、四肢发冷、面色苍白、出冷汗、头晕、心慌、恶心等);当血糖浓度低于45mg/dl时,出现低血糖晚期症状(除早期症状外还出现惊厥及昏迷等)。这种情况下,专家们建议首选口服葡萄糖。为什么呢? 人体内三大类营养物质糖类、脂肪和蛋白质中,糖类和脂肪是主要的供能物质,其中,又以糖类,特别是葡萄糖,为机体首选的供能物质。 食物中

金色葡萄球感染有什么临床表现

典型的金黄色葡萄球菌为球型,直径0.8μm左右,显微镜下排列成葡萄串状。金黄色葡萄球菌无芽胞、鞭毛,大多数无荚膜,革兰氏染色阳性。金黄色葡萄球菌营养要求不高,在普通培养基上生长良好,需氧或兼性厌氧,最适生长温度37°C,最适生长pH 7.4。平板上菌落厚、有光泽、圆形凸起,直径1-2mm。血平板菌落周围形成透明的溶血环。金黄色葡萄球菌有高度的耐盐性,可在10-15%NaCl肉汤中生长。可分解葡萄糖、麦芽糖、乳糖、蔗糖,产酸不产气。甲基红反应阳性,VP反应弱阳性。许多菌株可分解精氨酸,水解尿素,还原硝酸盐,

葡萄糖酸内酯有毒吗

葡萄糖酸内酯 --- 俗称:内酯,是一种用途十分广泛的食品添加剂 。 它一般是白色晶体或结晶粉末。几乎无臭。味先甜后酸。约于153℃分解.易溶于水,在水溶液中缓慢水解形成葡萄糖酸及其δ内酯和у内酯的平衡状态.稍溶于乙醇,不溶于乙醚. 用途:调味剂、豆腐凝固剂、PH降低剂及膨松剂的原料。加于牛乳中可防止生成乳石。酿酒业可作啤酒石的防止剂。加于牙膏中有助于清除牙垢. 葡萄糖酸内酯用来做豆腐和豆腐脑是无毒的,可放心食用。

葡萄为什么有酒味

葡萄有酒味是因为放置时间较长发酵,葡萄糖分解发酵成了酒精,这本身没有任何毒害。

催产素引产方法有哪些

(1)催产素的给药途径 持续静脉滴注给药。目前公认小剂量滴注催产素为安全常用的给药途径,它可随时调整用药剂量,保持生理水平的有效宫缩,一旦发生异常即可随时停药。 (2)配置方法 应先用5%葡萄糖注射液500ml,采用7号针头行静脉滴注,安每分钟8滴调好滴速,然后再向输液瓶中加入2.5U催产素,将其摇匀后继续滴入。切忌先将 2.5U催产素溶于葡萄糖中直接穿刺行静脉滴注,因此法初调时不易掌握滴速,可能在短时间内进入体内过多的催产素不安全。 (3)掌握合适的浓度与滴速 因催产素个体敏感度差异极大,静脉滴注催产素

定期监测糖尿病血糖的重要性

血液中的糖称为血糖,绝大多数情况下都是葡萄糖。体内各组织细胞活动所需的能量大部分来自葡萄糖,所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。正常人在清晨空腹血糖浓度为80~120毫克%。 空腹血糖浓度超过130毫克%称为高血糖。如果血糖浓度超进160~180毫克%,就有一部分葡萄糖随尿排出,这就是糖尿。血糖浓度低于70毫克%称为低血糖。 低血糖可见于饥饿时间过长,持续的剧烈体力活动,严重肝肾疾病,垂体前叶机能减退、肾上腺皮质机能减退等。低血糖时,脑组织首先对低血糖出现反应,表现为头晕、心悸、出冷

吃多少山竹可以解酒 山竹解酒效果好吗

山竹的解酒效果一般。 因为山竹的糖分组成中除了果糖,还有一些葡萄糖和多糖,而解酒作用是果糖效果最好,葡萄糖分解也需要氧气的帮助,依靠葡萄糖解酒的话,肝脏很容易出现缺氧导致肝脏受损的情况。

血糖对人体的作用

血液中的糖称为血糖,绝大多数情况下都是葡萄糖。体内各组织细胞活动所需的能量大部分来自葡萄糖,所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。 正常人在清晨空腹血糖浓度为80 ̄120毫克%。空腹血糖浓度超过130毫克%称为高血糖。如果血糖浓度超进160 ̄180毫克%,就有一部分葡萄糖随尿排出,这就是糖尿。血糖浓度低于70毫克%称为低血糖。 可见于饥饿时间过长,持续的剧烈体力活动,严重肝肾疾病,垂体前叶机能减退、肾上腺皮质机能减退等。低血糖时,脑组织首先对低血糖出现反应,表现为头晕、心悸、出冷汗以及