养生健康

氢氧化钙的物理性质

氢氧化钙的物理性质

氢氧化钙,化学式为Ca(OH)2,疏松的白色粉末,在580℃时失水成为氧化钙。氢氧化钙微溶于水,具有较强的碱性;氢氧化钙的溶解度在20℃时为 0.166克/100克水,随着温度升高而减小,100℃时为0.08克/100克水;能吸收空气中二氧化碳生成碳酸钙沉淀。

溶于酸、铵盐、甘油,难溶于水,不溶于醇,对皮肤、织物有腐蚀作用。工业品氢氧化钙称熟石灰或消石灰,其澄清的水溶液称石灰水;与水组成的乳状悬浮液称石灰乳。由于它的价格低,在需要氢氧根离子时都使用它。氢氧化钙可用于制造漂白粉和建筑材料灰泥,或水的软化。

氢氧化铝的物化性质是怎样的

抗酸作用慢、持久、较强,有收敛作用,有粘膜保护作用,导致便秘,不产生CO2(二氧化碳),无酸反跳,无碱血症。

氢氧化铝与酸反应:Al(OH)3+3HCl==AlCl3+3H2O(可用来中和胃酸)

Al(OH)3+3H+→Al3++3H2O

氢氧化铝与碱反应:Al(OH)3+NaOH→Na[Al(OH)4]==NaAlO2+2H2O

氢氧化铝在碱性环境中异构反应:Al(OH)3→H3AlO3(铝酸)

Al(OH)3+OH-→AlO2-+2H2O

氢氧化铝受热分解:2Al(OH)3==加热==Al2O3+3H2O

氢氧化铝水中两种电离:

1、Al(OH)3→Al3++ 3OH-(碱式电离)

2、Al(OH)3+H2O→Al(OH)4]-+H+(酸式电离)

其中的[Al(OH)4]-中学上习惯写成AlO2-,但是实际上这是错误的。

一般所谓的氢氧化铝实际上是指三氧化二铝的水合物。如向铝盐溶液中加入氨水或碱而得到的白色胶状沉淀,其含水量不定,组成也不均匀,统称为水合氧化铝。只有在铝酸盐溶液中(含有Al(OH)4-离子)的溶液中通CO2才可得到真正的氢氧化铝。

结晶的氢氧化铝与水合氧化铝不同,难溶于酸,加热到373K也不脱水,在573K加热2h才能转变为偏氢氧化铝(AlO(OH))。

氢氧化铝属两性氢氧化物。由于其存在两种电离形式,既是弱酸,可以有酸式化学式H3AlO3,又是弱碱,可以有碱式化学式Al(OH)3。氢氧化铝具有两性,既能与酸反应又能与碱反应。

氢氧化铝的酸性在于它是路易斯酸可以加合OH-,从而体现碱性。

Al(OH)3由于两种电离的存在,可以产生两种盐:铝元素两种盐:

⒈铝盐:Al3+AlCl3,KAl(SO4)2·12H2O(明矾)。它们的水溶液因Al3+的水解而显酸性 分别滴加AgNO3和稀硝酸,产生白色沉淀的为Cl-;产生浅黄色沉淀的为Br-;产生黄色沉淀的为I-。

2.偏铝酸盐,AlO2-NaAlO2,KAlO2.它们的水溶液呈碱性:AlO2-+ 2H2O → Al(OH)3+ OH-当两类盐混合时,即发生双水解反应,生成 Al(OH)3Al3++ 3 AlO2-+ 6H2O == 4Al(OH)3↓。

氢氧化铝主要有325目、800目、1250目、5000目四个规格。白色粉末状固体。几乎不溶于水,能凝聚水中的悬浮物,吸附色素。

镉的物理性质

镉是银白色有光泽的金属,熔点320.9℃,沸点765℃,密度8650 kg/m3;。有韧性和延展性。镉在潮湿空气中缓慢氧化并失去金属光泽,加热时表面形成棕色的氧化物层,若加热至沸点以上,则会产生氧化镉烟雾。高温下镉与卤素反应激烈,形成卤化镉。也可与硫直接化合,生成硫化镉。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可形成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。

镉的毒性较大,被镉污染的空气和食物对人体危害严重,且在人体内代谢较慢,日本因镉中毒曾出现“痛痛病”。

可用多种方法从含镉的烟尘或镉渣(如煤或炭还原或硫酸浸出法和锌粉置换)中获得金属镉。进一步提纯可用电解精炼和真空蒸馏。镉主要用于钢、铁、铜、黄铜和其他金属的电镀,对碱性物质的防腐蚀能力强。镉可用于制造体积小和电容量大的电池。镉的化合物还大量用于生产颜料和荧光粉。硫化镉、硒化镉、碲化镉用于制造光电池。

汞的物理性质

汞是在常温、常压下唯一以液态存在的金属。熔点-38.87℃,沸点356.6℃,密度13.59克/立方厘米。内聚力很强,在空气中稳定,常温下蒸发出汞蒸气,蒸气有剧毒。天然的汞是汞的七种同位素的混合物。汞微溶于水,在有空气存在时溶解度增大。汞在自然界中普遍存在,一般动物植物中都含有微量的汞,因此我们的食物中,都有微量的汞存在,可以通过排泄、毛发等代谢。

合金:汞容易与大部分普通金属形成合金,这些合金统称汞合金(或汞齐)。能与汞形成合金的金属包括金和银,但不包括铁,所以铁粉一直以来被用于置换汞。其他一些第一行的过渡金属难于形成合金,但不包括锰、铜和锌。其他不易与汞形成合金的元素有铂和其他一些金属。钠汞齐是有机合成中常用的还原剂,也被用于高压钠灯中。

当汞和铝的纯金属接触时,它们易于形成铝汞齐,因为铝汞齐可以破坏防止继续氧化金属铝的氧化层(毛刷实验),所以即使很少量的汞也能严重腐蚀金属铝。出于这个原因,绝大多数情况下,汞不能被带上飞机,因为它很容易与飞机上暴露的铝质部件形成合金而造成危险。

液态:作为金属的汞,在常温下却离奇地以液态存在。相对论收缩效应理论能为这一不寻常的现象提供解释。与金相仿,汞的6s 轨道在收缩的同时并趋于稳定化导致了一种称之为“惰性电子对”效应:汞的6s2壳层在成键过程中呈现惰性。可以看到汞的6s26p激发能远远超过镉和锌的相应激发能。

按照一般周期规律能量间隔应随主量子数增加而减小。所以,由锌到镉能量间隔变小在预料之中,然而由镉到汞该能量间隔反而陡然增加。这里可以再次看到正是相对论收缩效应致使全满的6s2壳层安然稳定,于是汞的6s26p能量间隔骤增。只要得不到所需的激发能,具有惰性6s2壳层的汞原子之间就无法形成强键。基态Hg2仅靠范德华力相互维系,所以金属汞在常温下呈液态。

二氧化氯的物理性质

二氧化氯是黄红色有强烈刺激性臭味气体,11℃时凝聚成红棕色液体,-59℃时凝结成橙红色晶体。液体为红褐色,固体为橙红色。相对蒸气密度2.3g/L。遇热水则分解成次氯酸、氯气、氧气,受光也易分解,其溶液于冷暗处相对稳定。

二氧化氯能与许多化学物质发生爆炸性反应。对热、震动、撞击和摩擦相当敏感,极易分解发生爆炸。受热和受光照或遇有机物等能促进氧化作用的物质时,能促进分解并易引起爆炸。若用空气、二氧化碳、氮气等惰性气体稀释时,爆炸性则降低。

二氧化氯属强氧化剂,其有效氯是氯的2.6倍。与很多物质都能发生剧烈反应。腐蚀性很强。

溶解情况:易溶于水,遇水分解,容易和水发生化学反应(水溶液中的亚氯酸和氯酸只占溶质的2%);在水中的溶解度是氯的5-8倍。溶于碱溶液而生成亚氯酸盐和氯酸盐。

氢氧化钙的安全性

毒性防护

其粉尘或悬浮液滴对粘膜有刺激作用,能引起喷嚏和咳嗽,和碱一样能使脂肪皂化,从皮肤吸收水分、溶解蛋白质、刺激及腐蚀组织。吸入石灰粉尘可能引起肺炎。 最高容许浓度为5mg/m3。 吸入粉尘时,可吸入水蒸气、可待因及犹奥宁,在胸廓处涂芥末膏;当落入眼内时,可用流水尽快冲洗,再用5%氯化铵溶液或0.01%CaNa2-EDTA溶液冲洗,然后将0.5%地卡因溶液滴入。工作时应注意保护呼吸器官,穿戴用防尘纤维制的工作服、手套、密闭防尘眼镜,并涂含油脂的软膏,以防止粉尘吸入。

包装储运

用内衬聚乙烯塑料薄膜袋的塑料编织袋包装,每袋净重25kg。应贮存在干燥的库房中。严防潮湿。避免与酸类物质共贮混运。运输时要防雨淋。失火时,可用水,砂土或一般灭火器扑救。

石灰水做冰粉对人体有害吗 冰粉里的石灰水可以用什么代替

食品级氢氧化钙或牙膏代替。

制作冰粉的石灰水其实是熟石灰,其主要成分也是氢氧化钙,所以还可以直接用食用级的氢氧化钙来代替石灰粉,实际差距应该不会很大。

而牙膏的主要成分是碳酸钙,与天然石灰石的成分很相似,所以也可以用牙膏代替,但最好选用水果味的牙膏,这样制作出来的冰粉会带有一股水果的香味,不然可能会导致制作成的冰粉有一股牙膏味,如果有人吃不惯这种味道的话,就会容易感觉恶心。

急性酒精中毒的病源介绍

乙醇的物理性质主要与其低碳直链醇的性质有关。分子中的羟基可以形成氢键,因此乙醇黏度很大,也不及相近相对分子质量的有机化合物极性大。室温下,乙醇是无色易燃,且有特殊香味的挥发性液体。

λ=589.3nm和18.35°C下,乙醇的折射率为1.36242,比水稍高。

作为溶剂,乙醇易挥发,且可以与水、乙酸、丙酮、苯、四氯化碳、氯仿、乙醚、乙二醇、甘油、硝基甲烷、吡啶和甲苯等溶剂混溶。此外,低碳的脂肪族烃类如戊烷和己烷,氯代脂肪烃如1,1,1-三氯乙烷和四氯乙烯也可与乙醇混溶。随着碳数的增长,高碳醇在水中的溶解度明显下降。

由于存在氢键,乙醇具有潮解性,可以很快从空气中吸收水分。羟基的极性也使得很多离子化合物可溶于乙醇中,如氢氧化钠、氢氧化钾、氯化镁、氯化钙、氯化铵、溴化铵和溴化钠等。氯化钠和氯化钾则微溶于乙醇。此外,其非极性的烃基使得乙醇也可溶解一些非极性的物质,例如大多数香精油和很多增味剂、增色剂和医药试剂。

钕的物理性质

单质密度: 7.007 g/cm3

单质熔点: 1024 ℃

单质沸点: 3074 ℃

1

2

3

4

5#include

int main()

{

returen 0;

}

体积弹性模量:Gpa,31.8

原子化焓:kJ /mol 25℃322

钕磁铁 热容:J /(mol· K):27.45

导电性:10^6/(cm ·Ω ):0.0157

导热系数:W/(m·K):16.5

熔化热:(千焦/摩尔):7.140

汽化热:(千焦/摩尔):273.0

原子体积:(立方厘米/摩尔):20.6

元素在宇宙中的含量:(ppm):0.01

元素在太阳中的含量:(ppm):0.003

元素在海水中的含量:(ppm)

太平洋表面 0.0000018

地壳中含量:(ppm):38

元素原子量:144.24

晶体结构:晶胞为六方晶胞。

相对原子质量: 144.24

常见化合价: +3

电负性: 1.14

外围电子排布: 4f4 6s2

核外电子排布: 2,8,18,22,8,2

电子层:K-L-M-N-O-P

同位素及放射线: *Nd-142 Nd-143 Nd-144(放 α[2.1E15y]) Nd-145 Nd-146 Nd-147[10.98d] Nd-148 Nd-149[1.72h] Nd-150

质子数:60

中子数:84

电子数:60

原子核亏损质量:0.95808u

电子亲合和能: 0 KJ·mol-1

第一电离能: 530 KJ·mol-1

第二电离能: 1034 KJ·mol-1

第三电离能: 0 KJ·mol-1

原子半径: 2.64 埃

离子半径: 未知 埃

共价半径: 1.64 埃

晶胞参数:

a = 365.8 pm

b = 365.8 pm

c = 1179.9 pm

α = 90°

β = 90°

γ = 120°

氧化态:

Main Nd+3

Other Nd+2, Nd+4

金属钕 维氏硬度:343MPa

声音在其中的传播速率:(m/S) 2330

电离能 (kJ /mol)

M - M+ 529.6

M+ - M2+ 1035

M2+ - M3+ 2130

M3+ - M4+ 3899

因为钕离子的吸收谱线比较特殊,在不同光源下有不同颜色

钕离子吸收谱线 荧光灯下从(左到右的是硫酸钕,硝酸钕和氯化钕)

生石灰比重是多少

生石灰比重是多少

要知道生石灰的比重是多少,首先我们必须了解生石灰的性质,生石灰的性质是成份为氧化钙加水马上发热变成氢氧化钙。反应方式程式为:CaO+H2O==& gt;Ca(HO)2,当然这个反应过程根据常识都可以了解到,我们计算得出CaO的分子量为56,Ca(HO)2的分子量为74,所以我们可以为一个立方的氧化钙加入水便可以生成74/(56*1)个立方的氢氧化钙,也就是说反应变为的氢氧化钙重量为1.322倍的氧化钙的重量,多出的那一部份我们可以肯定是因为水的原因。有了这个比值我们就可以轻而易举的了解到生石灰与熟石灰的比重了。假如你用的生石灰密度为1吨/M3,那么加入充足的水后(保证反应完全)就可生成1.322吨的的熟石灰。也就是,我们想要知道生石灰的比重。用生石灰的密度*1.322倍就可得出生成的熟石灰的重量了。

接下来我们再深入的了解下生石灰。

一、生石灰的制备

原料:凡是以碳酸钙为主要成分的天然岩石,如石灰岩、白垩、白云质石灰岩等,都可用来生产石灰。

在实际生产中,为加快分解,煅烧温度常提高到1000~1100℃。由于石灰石原料的尺寸大或煅烧时窑中温度分布不匀等原因,石灰中常含有欠火石灰和过火石灰。欠火石灰中的碳酸钙未完全分解,使用时缺乏粘结力。过火石灰结构密实,表面常包覆一层熔融物,溶化很慢。由于生产原料中常含有碳酸镁(MgCO3),因此生石灰中还含有次要成分氧化镁(MgO),根据氧化镁含量的多少,生石灰分为钙质石灰(MgO≤5%)和镁质石灰(MgO>5%)。

生产工艺:原始的石灰生产工艺是将石灰石与燃料(木材)分层铺放,引火煅烧一周即得。现代则采用机械化、半机械化立窑以及回转窑、沸腾炉等设备进行生产。煅烧时间也相应地缩短,用回转窑生产石灰仅需2~4小时,比用立窑生产可提高生产效率5倍以上。近年来,又出现了横流式、双斜坡式及烧油环行立窑和带预热器的短回转窑等节能效果显著的工艺和设备,燃料也扩大为煤、焦炭、重油或液化气等。

氢氧化钙的用途

产品用途:环保中和剂,酸性废水、污水处理、锅炉烟气脱硫;化工原料、添加剂、助剂、填料制革、冶金、涂料、石油润滑油、造纸、食品、药品、饲料等;

其他用途:石材助割剂、土壤稳定剂、混凝土调质剂、化学试剂、石膏板嵌缝凝结剂、建筑粘合剂配料,烷基磺酸钙、医药止酸剂、收敛剂、硬水软化剂、塑料纤维等;作为强碱性药剂中和酸性废水或者重金属废水,使酸性废水成为中性;吸收锅炉烟气中的SO2,使排放烟气含硫量符合环保标准;对废水中胶体微粒能起助凝作用,并作为颗粒核增重剂,加速不溶物的分离;能有效的去除磷酸根、硫酸根及氟离子等阴离子;能破坏氨基磺酸根等络合剂或鳌合剂对有些金属离子的结合;通过调节PH值对乳化液废水有脱稳破乳的作用。

氢氧化钙的临床应用

氢氧化钙的临床应用,主要应用于下面三方面:

第一,活髓切断术,活髓切断术的目的是切除有病变的冠部牙髓,保存健康的根部牙髓及牙髓的生机,维持了乳牙牙根的正常吸收和零落,促进年轻恒牙牙根的进一步发育和根尖孔的封锁。

第二,根尖诱导成形术,当年轻恒牙的牙根尚处于发育阶段的时分,由于某种缘由,如龋齿、畸形、外伤等,使牙髓坏死,牙根中止发育,致使根尖呈开放状态。关于此类患牙的治疗,曾使口腔科医生感到十分棘手,由于根管腔大,用常规扩挫根管的办法,要到达彻底的清创是十分艰难的,若要使根管紧密充填简直是不可能的。

二十世纪六十年代以来,国外在这方面作了大量的研讨工作,改动了过去单纯机械充填的办法,而是促使根尖继续发育到达封锁根尖的新途径,取得了显著的效果。即先用药物促使根尖发育完成,使之封锁,然后再作根管充填。这就是所谓的根尖诱导成形术。比拟公认的效果较好的药物是含氢氧化钙的制剂。

第三,盖髓术,是用药物直接掩盖暴露的牙髓,以促进牙髓愈合和修复的治疗,通常适用于安康的新颖暴露牙髓。

氢氧化钙制剂在临床上的效果已被公认。

氢氧化钙的溶解解析

大多数固体物质溶于水时吸收热量,根据平衡移动原理,当温度升高时,平衡有利于向吸热的方向移动,所以,这些物质的溶解度随温度升高而增大,例如KNO3、NH4NO3等。有少数物质,溶解时有放热现象,一般地说,它们的溶解度随着温度的升高而降低,例如氢氧化钙等。 对氢氧化钙的溶解度随着温度升高而降低的问题,还有一种解释,氢氧化钙有两种水合物〔Ca(OH)2·2H2O和Ca(OH)2·12H2O〕。这两种水合物的溶解度较大,无水氢氧化钙的溶解度很小。随着温度的升高,这些结晶水合物逐渐变为无水氢氧化钙,所以,氢氧化钙的溶解度就随着温度的升高而减小。

系统解释氢氧化钙的溶解度将在很大程度上超出初中课程的知识范围。离子化合物的溶解可大致分为两个过程。首先固体离子化合物与水亲和发生溶剂化作用(可简单的认为离子化合物先以"分子"的形式进入溶剂中),然后这些已进入溶剂的"分子"发生电离作用形成离子。

过程1(即电离过程)只能是一个吸热过程(可从系统的电势能的角度分析而知)。而过程2(即溶剂化过程)的热效应却不一定。

我们以固体Ca(OH)2溶于水为例。溶解前的体系是氢氧化钙固体和纯水。

对于过程2:Ca(OH)2(固体)+nH2O → Ca(OH)2.nH2O(溶液)的热效应主要取决于氢氧化钙是否与水作用形成配合物即Ca(OH)2.nH2O的形式(n的值取决于钙元素的空电子轨道数目和其他外部条件如温度条件等)。事实上氢氧化钙是能和水形成配和物的。而形成配合物的过程是一个放热过程。形成的配合可以发生过程2(即电离过程):

Ca(OH)2.nH2O → Ca(H2O)n2+ + 2 OH-

由于钙元素与水分子的配合过程的放热效应很大,它包含于过程1中,超过了过程1与过程2中其它有热效应的过程的影响,故氢氧化钙的溶解过程总的热效应是放热。温度升高将会使溶解平衡过程向相反方向移动,故而氢氧化钙的溶解度随温度升高而减小。体系在溶解前后总的能量比较是溶解前大于溶解后。多余的能量以热能的形式放出。

相关推荐

鹅蛋很脏可以洗了再放起来吗 鹅蛋的最佳储存方法

1、谷物保存:在农村一般都是将新鲜的鹅蛋与一些谷壳、稻谷等混合谷物一起保存,因为谷物具有一定的吸湿性,能够吸收环境的水分,从而起到延长鹅蛋保质时间的作用。 2、石灰水保存:生石灰与水生成氢氧化钙,然后氢氧化钙可以与鹅蛋排出来的二氧化碳生成碳酸钙,沉淀在鹅蛋的气孔处,起到封闭气孔的作用,从而起到延长鹅蛋保质时间的作用。

吸湿袋下面的水结晶正常吗 吸湿袋的水有毒吗

无毒。 吸湿袋上面的氯化钙会吸收空气中的水汽集中收集到袋子中,这些液体物质多是氯化钙及其水合物,是除湿剂氯化钙吸收水分产生化学反应后自动溶解的物质,是无毒的。但是这些液体中会有一定的氢氧化钙成分,如果过量被人体服食或者吸收则会导致有危险的症状,所以切忌食用。但吸湿袋中的水分满了之后一定要及时处理掉。

除湿袋里的水有毒吗

没有毒。 除湿袋中液体的主要物质为氯化钙和水的混合物,这是除湿袋当中氯化钙吸收水分之后产生化学反应后自动溶解所产生的物质,这种液体物质是不具有毒性。但是这些液体中会有一定的氢氧化钙成分,如果过量被人体服食或者吸收则会导致有危险的症状。所以不宜直接用身体接触除湿袋中的液体,当吸湿袋中的水满了之后一定要及时处理掉。

冰醋酸的物理性质

英文名称:AceticAcid

鹅蛋怎么保存时间长

将检验合格的鲜蛋,保存在温度为1℃-2℃的冷库内,在这样的温度下,胚胎停止发育,蛋内的微生物和酶的活动受到抑制,从而达到保鲜的目的。 生石灰(氧化钙)遇水后生成氢氧化钙氢氧化钙再与蛋内排出的二氧化碳结合,生成不溶性的碳酸钙沉在蛋壳上,将蛋壳上的气孔阻塞,使蛋的呼吸作用减弱,阻止蛋内水分向外蒸发和外界微生物的侵入,从而达到保存的目的。取0.5千克生石灰加25千克清水充分搅拌,经2天的静置沉淀后,取上面的清液倒入缸内,然后将挑选好的蛋放人缸内浸泡,盖上缸盖,周围温度保持在25℃以下,最好是10℃一15C,采

过氧化氢应急处理

泄漏应急处理 迅速撤离泄漏污染人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。 小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。 大量泄漏:构筑围堤或挖坑收容;喷雾状水冷却和稀释蒸汽、保护现场人员、把泄漏物稀释成不燃物。用泵转移至槽车或专用收集器内,回收或到家至废物处理场所处置。 废弃物处置方法:废液经水稀释后发生分解,放出氧气,待充分分解后,把废液冲入下水道。 防护措施

氢氧化铝的用途有哪些

氢氧化铝是用量最大和应用最广的无机阻燃添加剂。氢氧化铝作为阻燃剂不仅能阻燃,而且可以防止发烟、不产生滴下物、不产生有毒气体,因此,获得较广泛的应用,使用量也在逐年增加。使用范围:热固性塑料、热塑性塑料、合成橡胶、涂料及建材等行业。同时,氢氧化铝也是电解铝行业所必需氟化铝的基础原料,在该行业氢氧化铝也是得到非常广泛应用。 氢氧化铝在医疗上,常用于治疗胃酸过多,胃酸的主要成分是盐酸,利用氢氧化铝与胃酸反应生成无毒无害的氯化铝排出体外。反应方程式为:Al(OH)3+3HCl==AlCl3+3H2O 为何采用氢氧

生石灰是什么

石灰有生石灰和熟石灰之分。生石灰的主要成分是氧化钙(CaO),白色固体耐火难容。将(CaO)含量高的石灰岩在通风的石灰窑中锻烧至900℃以上即得。是有吸水性,可用作干燥剂,我国民间常用以防止杂物回潮。与水反应(同时放出大量的热),或吸收潮湿空气中的成水分,即成熟石灰[氢氧化钙Ca(OH)2],又称“消石灰”。熟石灰在一升水中溶解1.56克(20℃),它的饮和溶液称为“石灰水”,呈碱性,在空气中吸收二氧化碳而成碳酸钙沉淀。

甲醇的物理性质

1.性状:无色透明液体,有刺激性气味。 2.熔点(℃):-97.8 3.沸点(℃):64.7 4.相对密度(水=1):0.79 5.相对蒸气密度(空气=1):1.1 6.饱和蒸气压(kPa):12.3(20℃) 7.燃烧热(kJ/mol):726.51 8.临界温度(℃):240 9.临界压力(MPa):7.95 10.辛醇/水分配系数:-0.82~-0.77 11.闪点(℃):8(CC);12.2(OC) 12.自燃温度(℃):436 13.爆炸上限(%):36.5 14.爆炸下限(%):6 15.溶解

回潮天气是开窗还是关窗 干燥剂吸水除湿

常用的家庭用吸湿剂有生石灰、木炭、活性炭等。特别是生石灰,吸水效果很好,缺点是生石灰(CaO)吸水后变成熟石灰氢氧化钙(Ca(OH)2),无法重复利用。木炭的吸湿效果要远差于生石灰,但晒干之后可重复使用。此外,其它成本稍高的干燥剂还有硅胶、氯化钙、氧化铝凝胶、分子筛、五氧化二磷等。使用方法是将干燥剂用报纸包好,在天气回潮时在房子室内四周或床下放置即可。如果将干燥剂跟少量沙子混合,增加干燥剂的通透性,可提高吸潮的效果。